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Abstract. In several branches of physics the Hamiltonian of a many-body system can be 
reduced to a rational Jacobi matrix (i.e. a Jacobi matrix whose elements are rational 
functions of the suffix) by means of a method of the Lanczos type. Here it is shown that 
one can calculate in a simple analytical way the asymptotic eigenvalue density of all these 
matrices by means of its moments without solving the corresponding eigenvalue problem. 
The method is applied to a large class of quantum mechanical models of Hamiltonians. 

1. Introduction 

The Lanczos method allows us to reduce (Mattis 1981) a large number of physical 
systems to a one-dimensional chain of artificial entities with nearest-neighbour coup- 
ling. This is done (Lanczos 1950, Paige 1972) by means of the transformation of the 
Hamiltonian of the system into a Jacobi matrix, i.e. a N-dimensional real tridiagonal 
and symmetric matrix. This method has been successfully used in solid state physics 
(Haydock 1976, Bullet et a1 1980), nuclear physics (Whitehead et a1 1977), statistical 
mechanics (Mori 1965), etc to study both individual (i.e. wavefunctions and energy 
levels) and collective (i.e. density of levels and states) properties of many different 
systems. 

Often (De Brucq and Tirapegui 1968, 1970, Gaspard and Cyrot-Lackman 1973) 
the Jacobi Hamiltonian H is a rational matrix; that is a matrix the entries of which 
are rational functions of the suffix. Recently one of us (Dehesa 1978) has proposed 
in a paper, henceforth to be referred to as paper I, a method which allows us to 
calculate in a simple analytical way, the eigenvalue density of rational Jacobi matrices by 
means of its moments. The purpose of this paper is to complete this method and to apply it 
to certain matrices of this rational type encountered in certain quantum mechanical 
problems. 

2. Main results 

Let H,,, = U, and H,+,,, = b, be the only non-vanishing elements of the Jacobi Hamil- 
tonian. Throughout this paper we will use the same symbols and notation as in I. In 
particular p"' (x)  and p ( x )  denote the eigenvalue density of H and its asymptotic 

0305-44701841183487 +05$02.25 0 1984 The Institute of Physics 3487 



3488 M C Bosca and J S Dehesa 

limit N + 00, respectively. The moments of these two density functions are pcL:'" and 
pi, also respectively. Besides, let us consider the two following asymptotic eigenvalue 
densities 

p * ( x )  = lim p"'(x/  N ( a - y ) J 2 )  
N-m 

p * * ( x )  = lim ~ ' " ( X / N ~ - ~ )  
N - m  

the moments of which are 

p y  = lim p , : c N ) / ~ r ( e - ~ )  

N + m  

r = 0, 1, 2 , .  . . , respectively. In paper I the following result is found. Assume the 
existence of a real number A s 0  such that 

Then for r = 0, 1, 2 , .  . . 

Now let us apply this result to a rational Jacobi Hamiltonian, that is a Jacobi matrix 
with 

a" = Qe(n)/Qp(n), bZ, = Q a ( n ) / Q y ( n )  

where the Q's are arbitrary polynomials defined as follows 

4 7 

Q 4 ( n )  = eina-', QJn) = f ; n y - '  
i = O  i = O  

(3)  

(4) 

In this case, equations (1) say that 
!/2 

a =L! C lim ~ ( e - p ) - A  and 
do N - m  N + m  

b = 2( ;) lim N ( a - Y ) / Z - A ,  

(Please note an error in equation (9) of paper I which however does not affect the 
results of it.) Then it is clear that the conditions 

O - p s A  and t ( a - ~ ) " A  

have to be fulfilled so that a E R  and b a 0. In particular one has 

e - p  < A+a = 0; 

e - p = A 3 a = CO/ do; 

$(a - y )  < A J b  = O  

f( a - y )  = A+ 6 = 2( e0/fo) ' / ' .  
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Thus, there are four different classes of rational Jacobi matrices (3)-(4) according 

Class I. 8 < p and a < y. Here a = 0 and b = O .  Then 

to the values of the parameters 8, p, a and y. They are as follows 

Class 11. 

IL:=o, 

8 - p < $( a - y ) .  Here a = 0 and b = 2( eo/fo)"*. Then 

r = 1,2, . . . . 

p g k - 1  =o, k = 1,2, . . 
We remark that all p:  will diverge unless a = y ;  in this case p(x) = p*(x) and p i =  pr 
for all r. 

Class 111. 8 - p  > ;(a - y ) .  Here a = coldo and b = 0. Then 

p; = ' (")r r=0 ,1 ,2 ,  ... 
r ( o - p ) + l  do ' 

and all the moments p:  diverge unless B = p. In the latter case p(x)  = p**(x) and 
p ~ = p y = ( c o / d o ) ' .  

ClassIV. 8 - p = f ( a - y ) .  Herea=co/doand b=2(eo/fo)'/2. Thenp*(x)=p**(x) 
with 

for r =0 ,  1, 2 , .  . . and where [r/2] is equal to r/2 or ( r -  1)/2 according to whether r 
is even or odd respectively. Besides, only if 8 = p it happens that p(x) = p*(x) = p**(x) 
with pi = pr = p:I. Otherwise all the p:  would diverge. 

3. Application 

The Hamiltonians of a class of quantum field theory models in zero dimensions can 
be represented in a suitable basis of Hilbert space by rational Jacobi matrices (De 
Brucq and Tirapegui 1968, 1970). Indeed, let us consider the class of models defined 
by the Lagrangian (the fields cp only depend on time t )  (De Brucq and Tirapegui 1968) 

L= cp+(i a/at-p)cp-g(cp+"cp" +cp+'"cp") (6) 

where U and U are integers such that U > U 3 1, the symbol T +  stands for the adjoint 
of the operator T, and g is a coupling constant. For these models the corresponding 
Hamiltonians are as follows: 

H 6 pb'b + g (  b+"b" + b'"b") 

where cp( t )  = b exp( - ipt)  has been used, and the operators b and b' satisfy the 
commutation relation [b, b'] = 1. In the invariant space E ( & )  (i.e. the subspace of the 
Hilbert space of any of these models which is spanned by the orthonormal basis 
( [ ( n - l ) q + k ) ,  n 3 1 ,  k = l ,  2, . . . ,  q z u - U )  the Hamiltonian H can be represented 
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by the Jacobi matrix of elements 

( n q  + k) ![( t~ - 1 ) q  + k]! 
bi = g 2  

{ [ ( n - l ) ~ - n ~ + k ] ! } ~  ' 
(7) 

These expressions are of the rational form (3)-(4) with 

6 =  1, CO = qPL, P =o, do= 1 

and 
2 v+u 

+(a - y )  =&(U + U )  > 1, eo/fo= g 9 

Then 6 - P = 1 is smaller than &(a - y ) .  Therefore the Jacobi Hamiltonian (7) belongs 
to class 11. As a consequence of this, all the moments of the asymptotic eigenvalue 
density p ( x )  are diverging. In this case, however, one can divide all the eigenvalues 
of the spectrum by N ( a - - y ) / 2  = N(u+U)/2 and then study the eigenvalue distribution in 
the limit N - .  00 by means of the density function p * ( x )  = LimN+m p ( N ) ( ~ / N ( " + U ) ' 2 ) ,  
the moments of which are according to ( 5 )  as follows 

Pgk-1 =o, k = 1,2, . . . . 
These quantities completely specify how the eigenenergies, if appropriately scaled, 

of the Hamiltonian H are concentrated or better distributed all over the spectrum in 
the asymptotic case. In particular since all the moments of odd order vanish, the 
distribution is symmetric around the origin. Besides, the second and fourth moments 
allow us to find the variance and the excess of such a distribution. 

Finally let us say that the class of models ( 6 )  has been only used with the purpose 
of illustrating the applicability of our method to determining the asymptotic eigenvalue 
distribution without the need to solve the associated eigenvalue problem. The method 
can be applied in the same straightforward way as described here to other classes of 
Lagrangians more general than ( 6 )  encountered in some quantum mechanical problems 
(De Brucq and Tirapegui 1970), to several types of tight-binding Hamiltonians of 
disordered materials (Cyrot-Lackman 1973, Dehesa 1984), etc. 
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